Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.393
Filtrar
1.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426496

RESUMO

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.


Assuntos
Túbulos Renais Coletores , Masculino , Camundongos , Animais , Túbulos Renais Coletores/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Néfrons/metabolismo , Rim/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
2.
Sci Adv ; 10(6): eadi7840, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324689

RESUMO

Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.


Assuntos
Túbulos Renais Coletores , Túbulos Renais Coletores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
3.
Am J Physiol Renal Physiol ; 326(3): F545-F559, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205543

RESUMO

Prior studies showed that epidermal growth factor (EGF) inhibits vasopressin-stimulated osmotic water permeability in the renal collecting duct. Here, we investigated the underlying mechanism. Using isolated perfused rat inner medullary collecting ducts (IMCDs), we found that the addition of EGF to the peritubular bath significantly decreased 1-deamino-8-d-arginine vasopressin (dDAVP)-stimulated water permeability, confirming prior observations. The inhibitory effect of EGF on water permeability was associated with a reduction in intracellular cAMP levels and protein kinase A (PKA) activity. Using phospho-specific antibodies and immunoblotting in IMCD suspensions, we showed that EGF significantly reduces phosphorylation of AQP2 at Ser264 and Ser269. This effect was absent when 8-cpt-cAMP was used to induce AQP2 phosphorylation, suggesting that EGF's inhibitory effect was at a pre-cAMP step. Immunofluorescence labeling of microdissected IMCDs showed that EGF significantly reduced apical AQP2 abundance in the presence of dDAVP. To address what protein kinase might be responsible for Ser269 phosphorylation, we used Bayesian analysis to integrate multiple-omic datasets. Thirteen top-ranked protein kinases were subsequently tested by in vitro phosphorylation experiments for their ability to phosphorylate AQP2 peptides using a mass spectrometry readout. The results show that the PKA catalytic-α subunit increased phosphorylation at Ser256, Ser264, and Ser269. None of the other kinases tested phosphorylated Ser269. In addition, H-89 and PKI strongly inhibited dDAVP-stimulated AQP2 phosphorylation at Ser269. These results indicate that EGF decreases the water permeability of the IMCD by inhibiting cAMP production, thereby inhibiting PKA and decreasing AQP2 phosphorylation at Ser269, a site previously shown to regulate AQP2 endocytosis.NEW & NOTEWORTHY The authors used native rat collecting ducts to show that inhibition of vasopressin-stimulated water permeability by epidermal growth factor involves a reduction of aquaporin 2 phosphorylation at Ser269, a consequence of reduced cAMP production and PKA activity.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Ratos , Animais , Fosforilação , Aquaporina 2/metabolismo , Desamino Arginina Vasopressina/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Água/metabolismo , Ratos Sprague-Dawley , Teorema de Bayes , Túbulos Renais Coletores/metabolismo , Vasopressinas/farmacologia , Proteínas Quinases/metabolismo , Permeabilidade
4.
Pflugers Arch ; 476(4): 565-578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227050

RESUMO

Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.


Assuntos
Infecções Bacterianas , Túbulos Renais Coletores , Infecções Urinárias , Criança , Camundongos , Humanos , Animais , Escherichia coli , Rim/metabolismo , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia , Túbulos Renais Coletores/metabolismo , Imunidade Inata , Infecções Bacterianas/metabolismo
5.
Pflugers Arch ; 476(4): 555-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195948

RESUMO

The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and ß-intercalated cells accomplish urinary base (HCO3-) secretion. ß-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of ß-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.


Assuntos
Túbulos Renais Coletores , Animais , Camundongos , Antiportadores de Cloreto-Bicarbonato/metabolismo , Rim/metabolismo , Túbulos Renais Coletores/metabolismo
6.
Am J Physiol Cell Physiol ; 326(1): C229-C251, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899748

RESUMO

This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.


Assuntos
Túbulos Renais Coletores , Túbulos Renais Coletores/metabolismo , Cultura Primária de Células , Rim/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Organoides
7.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043795

RESUMO

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Assuntos
Cálcio , Canais Iônicos , Túbulos Renais Coletores , Membrana Celular , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Pirazinas/farmacologia , Tiadiazóis/farmacologia , Água/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Animais , Camundongos , Cálcio/metabolismo
8.
Am J Physiol Renal Physiol ; 326(1): F152-F164, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969102

RESUMO

As miR-137 is a regulator of aquaporin (AQP)2 expression and tumor necrosis factor (TNF) inhibits the expression of several extrarenal AQPs, we tested the hypothesis that TNF inhibits AQP2 in the kidney via a miR-137-dependent mechanism. AQP2 mRNA and protein expression decreased ∼70% and 53%, respectively, in primary renal inner medullary collecting duct (IMCD) cells transfected with a miRNA mimic of mmu-miR-137, suggesting that miR-137 directly targets AQP2 mRNA in these cells. Exposure of IMCD cells for 2 h to 400 mosmol/kgH2O medium increased mmu-miR-137 mRNA expression about twofold, conditions that also increased TNF production approximately fourfold. To determine if the increase in mmu-miR-137 mRNA expression was related to the concomitant increase in TNF, IMCD cells were transfected with a lentivirus construct to silence TNF. This construct decreased mmu-miR-137 mRNA expression by ∼63%, suggesting that TNF upregulates the expression of miR-137. Levels of miR-137 also increased approximately twofold in IMCD tubules isolated from male mice given 1% NaCl in the drinking water for 3 days. Intrarenal lentivirus silencing of TNF increased AQP2 mRNA levels and protein expression concomitant with a decrease in miR-137 levels in tubules isolated from mice given NaCl. The changes in AQP2 expression levels affected the diluting ability of the kidney, which was assessed by measuring urine osmolality and urine volume, as the decrease in these parameters after renal silencing of TNF was prevented on intrarenal administration of miR-137. The study reveals a novel TNF function via a miR-137-dependent mechanism that regulates AQP2 expression and function.NEW & NOTEWORTHY An emerging intratubular tumor necrosis factor system, functioning during normotensive noninflammatory conditions, acts as a breaking mechanism that attenuates both the increases in Na+-K+-2Cl- cotransporter and aquaporin-2 induced by arginine vasopressin, thereby contributing to the regulation of electrolyte balance and blood pressure. A greater appreciation for the role of cytokines as mediators of immunophysiological responses may help reveal the relationship between the immune system and other physiological systems.


Assuntos
Aquaporinas , Túbulos Renais Coletores , MicroRNAs , Camundongos , Masculino , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cloreto de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aquaporinas/metabolismo
9.
Am J Physiol Renal Physiol ; 326(1): F143-F151, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942538

RESUMO

There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.


Assuntos
Acidose , Túbulos Renais Coletores , Camundongos , Animais , Suínos , Trimetoprima/farmacologia , Trimetoprima/metabolismo , Túbulos Renais Coletores/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Antibacterianos/farmacologia , Acidose/metabolismo
10.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990364

RESUMO

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Assuntos
Acidose Tubular Renal , Alcalose , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Humanos , Masculino , Camundongos , Animais , Acidose Tubular Renal/genética , Furosemida/farmacologia , Aquaporina 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rim/metabolismo , Alcalose/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renais Coletores/metabolismo
11.
Am J Physiol Cell Physiol ; 326(1): C194-C205, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047301

RESUMO

The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration. Conventional fluorescent microscopy provides a lateral resolution of ∼250 nm, which is insufficient to resolve the AQP2-containing endosomes/vesicles. Therefore, detailed information regarding the AQP2 vesicular population is still lacking. Newly established 4.5x Expansion Microscopy (ExM) can increase resolution to 60-70 nm. Using 4.5x ExM, we detected AQP2 vesicles/endosomes as small as 79 nm considering an average expansion factor of 4.3 for endosomes. Using different markers of the endosomal system provided detailed information of the cellular AQP2 itinerary upon changes in endogenous cAMP levels. Before cAMP elevation, AQP2 colocalized with early and recycling, but not late endosomes. Forskolin-induced cAMP increase was characterized by AQP2 insertion into the plasma membrane and AQP2 withdrawal from large perinuclear endosomes as well as some localization to lysosomal compartments. Forskolin washout promoted AQP2 endocytosis where AQP2 localized to not only early and recycling endosomes but also late endosomes and lysosomes indicating increased AQP2 degradation. Thus, our results show that 4.5 ExM is an attractive approach to obtain detailed information regarding AQP2 shuttling.NEW & NOTEWORTHY Renal aquaporin-2 (AQP2) imaged by expansion microscopy provides unprecedented 3-D information regarding the AQP2 itinerary in response to changes in cellular cAMP.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Aquaporina 2/metabolismo , Microscopia , Colforsina/farmacologia , Rim/metabolismo , Membrana Celular/metabolismo , Água/metabolismo , Túbulos Renais Coletores/metabolismo
12.
J Biol Chem ; 299(12): 105371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865316

RESUMO

Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteômica , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cromatografia Líquida , Sistemas CRISPR-Cas , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Fosforilação , Espectrometria de Massas em Tandem , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Deleção de Genes , RNA-Seq , Biologia Computacional , Motivos de Aminoácidos , Regulação para Baixo , Técnicas In Vitro
13.
Am J Physiol Renal Physiol ; 325(6): F770-F778, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823193

RESUMO

Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney's innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit (Atp6v1b1)-Cre (B1-Cre) mice. Although Atp6v1b1 is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system. We have recently shown using single-cell RNA sequencing that the gene that codes for the V-ATPase G3 subunit (mouse gene: Atp6v1g3; human gene: ATP6V1G3; protein abbreviation: G3) mRNA is selectively enriched in human kidney ICs. In this study, we generated Atp6v1g3-Cre (G3-Cre) reporter mice using CRISPR/CAS technology and crossed them with Tdtomatoflox/flox mice. The resultant G3-Cre+Tdt+ progeny was evaluated for kidney specificity in multiple tissues and found to be highly specific to kidney cells with minimal or no expression in other organs evaluated compared with B1-Cre mice. Tdt+ cells were flow sorted and were enriched for IC marker genes on RT-PCR analysis. Next, we crossed these mice to ihCD59 mice to generate an IC depletion mouse model (G3-Cre+ihCD59+/+). ICs were depleted in these mice using intermedilysin, which resulted in lower blood pH, suggestive of a distal renal tubular acidosis phenotype. The G3-Cre mice were healthy, bred normally, and produce regular-sized litter. Thus, this new "IC reporter" mice can be a useful tool to study ICs.NEW & NOTEWORTHY This study details the development, validation, and experimental use of a new mouse model to study the collecting duct and intercalated cells. Kidney intercalated cells are a cell type increasingly recognized to be important in several human diseases including kidney infections, acid-base disorders, and acute kidney injury.


Assuntos
Acidose Tubular Renal , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Camundongos , Humanos , Animais , Rim/metabolismo , Integrases/genética , Integrases/metabolismo , Acidose Tubular Renal/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Túbulos Renais Coletores/metabolismo
14.
FASEB J ; 37(11): e23232, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819258

RESUMO

In the kidney, the flow rate of the pro-urine through the renal tubules is highly variable. The tubular epithelial cells sense these variations in pro-urinary flow rate in order to regulate various physiological processes, including electrolyte reabsorption. One of the mechanosensitive pathways activated by flow is the release of ATP, which can then act as a autocrine or paracrine factor. Increased ATP release is observed in various kidney diseases, among others autosomal dominant polycystic kidney disease (ADPKD). However, the mechanisms underlying flow-induced ATP release in the collecting duct, especially in the inner medullary collecting duct, remain understudied. Using inner medullary collecting duct 3 (IMCD3) cells in a microfluidic setup, we show here that administration of a high flow rate for 1 min results in an increased ATP release compared to a lower flow rate. Although the ATP release channel pannexin-1 contributed to flow-induced ATP release in Pkd1-/- IMCD3 cells, it did not in wildtype IMCD3 cells. In addition, flow application increased the expression of the putative ATP release channel connexin-30.3 (CX30.3) in wildtype and Pkd1-/- IMCD3 cells. However, CX30.3 knockout IMCD3 cells exhibited a similar flow-induced ATP release as wildtype IMCD3 cells, suggesting that CX30.3 does not drive flow-induced ATP release in wildtype IMDC3 cells. Collectively, our results show differential mechanisms underlying flow-induced ATP release in wildtype and Pkd1-/- IMCD3 cells and further strengthen the link between ADPKD and pannexin-1-dependent ATP release.


Assuntos
Túbulos Renais Coletores , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Expressão Gênica , Trifosfato de Adenosina/metabolismo , Túbulos Renais Coletores/metabolismo
15.
J Histochem Cytochem ; 71(7): 357-375, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37439659

RESUMO

Lithium (Li) induces severe polyuria and polydipsia in up to 40% of patients undergoing Li treatment. In rats, Li treatment induces a reversible cellular remodeling of the collecting duct (CD), decreasing the fraction of principal-to-intercalated cells. To investigate the potential role of adherens junction proteins, we performed immunohistochemistry on kidney cross-sections from rats treated with Li as well as rats undergoing recovery on a normal diet following 4 weeks of Li-treatment. We performed immunoelectron microscopy on cryosections to determine the ultrastructural localizations. Immunohistochemistry showed that E-cadherin and ß-catenin were present in both the lateral and basal plasma membrane domains of CD cells. Immunoelectron microscopy confirmed that ß-catenin was localized both to the lateral and the basal plasma membrane. The basal localization of both proteins was absent from a fraction of mainly principal cells after 10 and 15 days of Li-treatment. After 4 weeks of Li-treatment few to no cells were absent of E-cadherin and ß-catenin at the basal plasma membrane. After 12 and 19 days of recovery some cells exhibited an absence of basal localization of both proteins. Thus, the observed localizational changes of E-cadherin and ß-catenin appear before the cellular remodeling during both development and recovery from Li-NDI.


Assuntos
Túbulos Renais Coletores , beta Catenina , Ratos , Animais , beta Catenina/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/ultraestrutura , Rim/metabolismo , Caderinas/metabolismo , Lítio/efeitos adversos , Lítio/metabolismo , Membrana Celular/metabolismo
16.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047509

RESUMO

We previously showed that the phosphatases PP1/PP2A and PP2B dephosphorylate the water channel, AQP2, suggesting their role in water reabsorption. In this study, we investigated whether protein phosphatase 2A (PP2A) and protein phosphatase 2B (PP2B or calcineurin), which are present in the inner medullary collecting duct (IMCD), are regulators of urea and water permeability. Inhibition of calcineurin by tacrolimus increased both basal and vasopressin-stimulated osmotic water permeability in perfused rat IMCDs. However, tacrolimus did not affect osmotic water permeability in the presence of aldosterone. Inhibition of PP2A by calyculin increased both basal and vasopressin-stimulated osmotic water permeability, and aldosterone reversed the increase by calyculin. Previous studies showed that adrenomedullin (ADM) activates PP2A and decreases osmotic water permeability. Inhibition of PP2A by calyculin prevented the ADM-induced decrease in water reabsorption. ADM reduced the phosphorylation of AQP2 at serine 269 (pSer269 AQP2). Urea is linked to water reabsorption by building up hyperosmolality in the inner medullary interstitium. Calyculin increased urea permeability and phosphorylated UT-A1. Our results indicate that phosphatases regulate water reabsorption. Aldosterone and adrenomedullin decrease urea or osmotic water permeability by acting through calcineurin and PP2A, respectively. PP2A may regulate water reabsorption by dephosphorylating pSer269, AQP2, and UT-A1.


Assuntos
Túbulos Renais Coletores , Proteínas de Membrana Transportadoras , Ratos , Animais , Ratos Sprague-Dawley , Proteínas de Membrana Transportadoras/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Tacrolimo/farmacologia , Água/metabolismo , Adrenomedulina , Aquaporina 2/metabolismo , Calcineurina/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Aldosterona/metabolismo , Vasopressinas/metabolismo , Permeabilidade , Túbulos Renais Coletores/metabolismo
17.
Kidney Int ; 103(3): 458-460, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822749

RESUMO

Arginine-vasopressin induces water reabsorption in collecting duct principal cells through the water channels aquaporin (AQP) 2, 3, and 4. Only the presence of these AQPs allows for short-term adjustments of plasma osmolality by arginine-vasopressin. How principal cells maintain the expression of the AQPs is unclear. Zhang et al., for the first time, identify a mechanism that explains the expression of the AQPs under resting conditions. They show that the transcription coregulator, yes-associated protein, is responsible for the coordinated expression of the 3 AQPs.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Aquaporina 2/metabolismo , Vasopressinas/metabolismo , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Água/metabolismo , Arginina/metabolismo , Túbulos Renais Coletores/metabolismo
18.
Adv Exp Med Biol ; 1398: 39-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717485

RESUMO

Aquaporins (AQPs) mediate the bidirectional water flow driven by an osmotic gradient. Either gating or trafficking allows for rapid and specific AQP regulation in a tissue-dependent manner. The regulatory mechanisms of AQP2 are discussed mainly in this chapter, as the mechanisms controlling the regulation and trafficking of AQP2 have been very well studied. The targeting of AQP2 to the apical plasma membrane of collecting duct principal cells is mainly regulated by the action of arginine vasopressin (AVP) on the type 2 AVP receptor (V2R), which cause increased intracellular cAMP or elevated intracellular calcium levels. Activation of these intracellular signaling pathways results in vesicles bearing AQP2 transport, docking and fusion with the apical membrane, which increase density of AQP2 on the membrane. The removal of AQP2 from the membrane requires dynamic cytoskeletal remodeling. AQP2 is degraded through the ubiquitin proteasome pathway and lysosomal proteolysis pathway. Finally, we review updated findings in transcriptional and epigenetic regulation of AQP2.


Assuntos
Aquaporinas , Túbulos Renais Coletores , Aquaporina 2/genética , Aquaporina 2/metabolismo , Epigênese Genética , Túbulos Renais Coletores/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675161

RESUMO

Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered similar Ca2+ oscillations, in the absence of extracellular Ca2+, by alkalizing the acidic lysosomal pH or activating the lysosomal cation channel mucolipin 1 (TRPML1), respectively. TRPML1-dependent Ca2+ signals were blocked either pharmacologically or by lysosomes' osmotic permeabilization, thus indicating these organelles as primary sources of Ca2+ release. Lysosome-induced Ca2+ oscillations were sustained by endoplasmic reticulum (ER) Ca2+ content, while bafilomycin A1 and ML-SA1 did not directly interfere with ER Ca2+ homeostasis per se. TRPML1 activation strongly increased AQP2 apical expression and depolymerized the actin cytoskeleton, thereby boosting water flux in response to an hypoosmotic stimulus. These effects were strictly dependent on the activation of the Ca2+/calcineurin pathway. Conversely, bafilomycin A1 led to perinuclear accumulation of AQP2 vesicles without affecting water permeability. Overall, lysosomal Ca2+ signaling events can be differently decoded to modulate Ca2+-dependent cellular functions related to the dock/fusion of AQP2-transporting vesicles in principal cells of the CD.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Lisossomos , Água , Animais , Camundongos , Aquaporina 2/genética , Aquaporina 2/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrolídeos/metabolismo , Água/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo
20.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675199

RESUMO

mpkCCDc14 cells, a polarized epithelial cell line derived from mouse kidney cortical collecting ducts, are known to express the vasopressin V2 receptor (V2R) and aquaporin-2 (AQP2) that are responsive to vasopressin. However, a low abundance of the endogenous AQP2 protein in the absence of vasopressin and heterogeneity of AQP2 protein abundance among the cultured cells may limit the further application of the cell line in AQP2 studies. To overcome the limitation, we aimed to establish mpkCCDc14 cells constitutively expressing V2R and AQP2 via CRISPR/Cas9-mediated genome engineering technology (i.e., V2R-AQP2 cells). 3'- and 5'-Junction PCR revealed that the V2R-AQP2 expression cassette with a long insert size (~2.2 kb) was correctly integrated. Immunoblotting revealed the expression of products of integrated Aqp2 genes. Cell proliferation rate and dDAVP-induced cAMP production were not affected by the knock-in of Avpr2 and Aqp2 genes. The AQP2 protein abundance was significantly higher in V2R-AQP2 cells compared with control mpkCCDc14 cells in the absence of dDAVP and the integrated AQP2 was detected. Immunocytochemistry demonstrated that V2R-AQP2 cells exhibited more homogenous and prominent AQP2 labeling intensity in the absence of dDAVP stimulation. Moreover, prominent AQP2 immunolabeling (both AQP2 and pS256-AQP2) in the apical domain of the genome-edited cells was observed in response to dDAVP stimulation, similar to that in the unedited control mpkCCDc14 cells. Taken together, mpkCCDc14 cells constitutively expressing V2R and AQP2 via genome engineering could be exploited for AQP2 studies.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Desamino Arginina Vasopressina/metabolismo , Túbulos Renais Coletores/metabolismo , Vasopressinas/metabolismo , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...